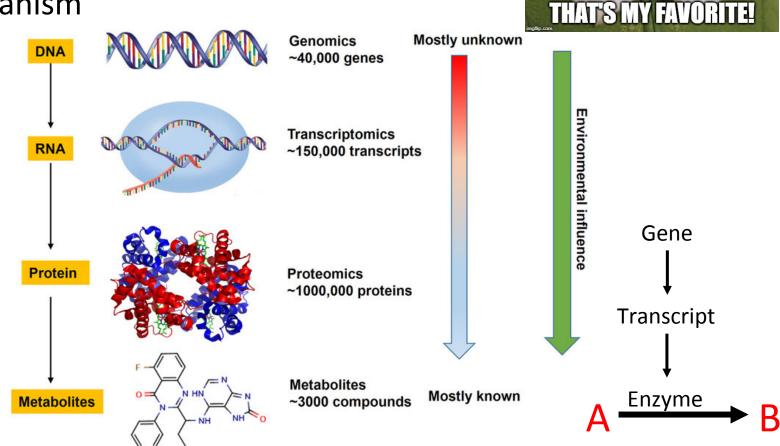
Metabolomics and You

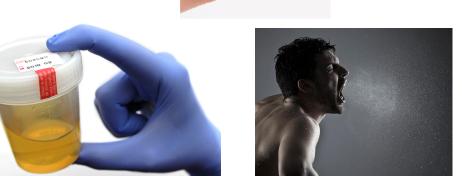
Peter R. Baker II, MD, FAAP, FCMGG Section of Clinical Genetics and Metabolism Department of Pediatrics University of Colorado


Objectives

- Define "metabolomics".
- Describe how metabolomics is used currently in research. In the clinical setting?
- Identify potential uses for metabolomic analyses in newborn screening.

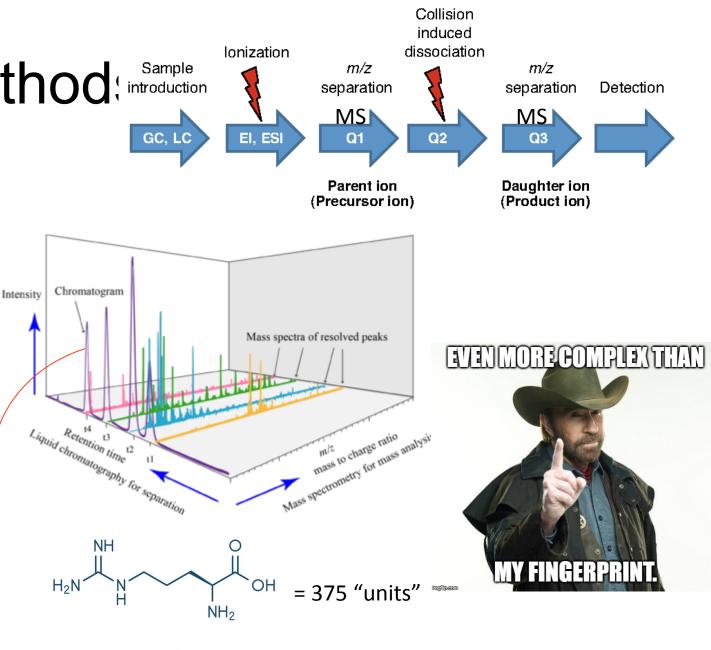
What is Metabolomics?

- "-Omics": The collective technologies used to explore the roles, relationships, and actions of the various types of molecules that make up the cells of an organism
 - Genomics/Epigenomics
 - Transcriptomics
 - Proteomics
 - Metabolomics
 - Phenomics
 - Lipidomics
 - Glycomics
 - Foodomics
 - Inflammomics
 - Beeromics


H ERUM

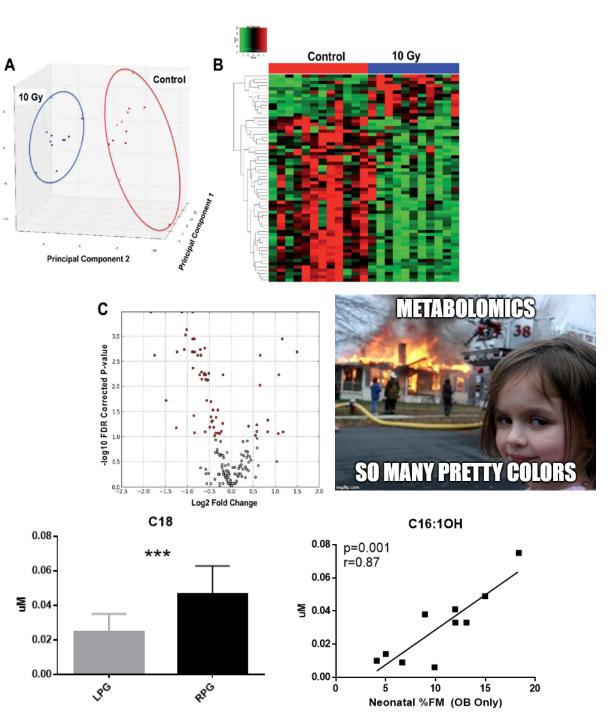
What is Metabolomics?

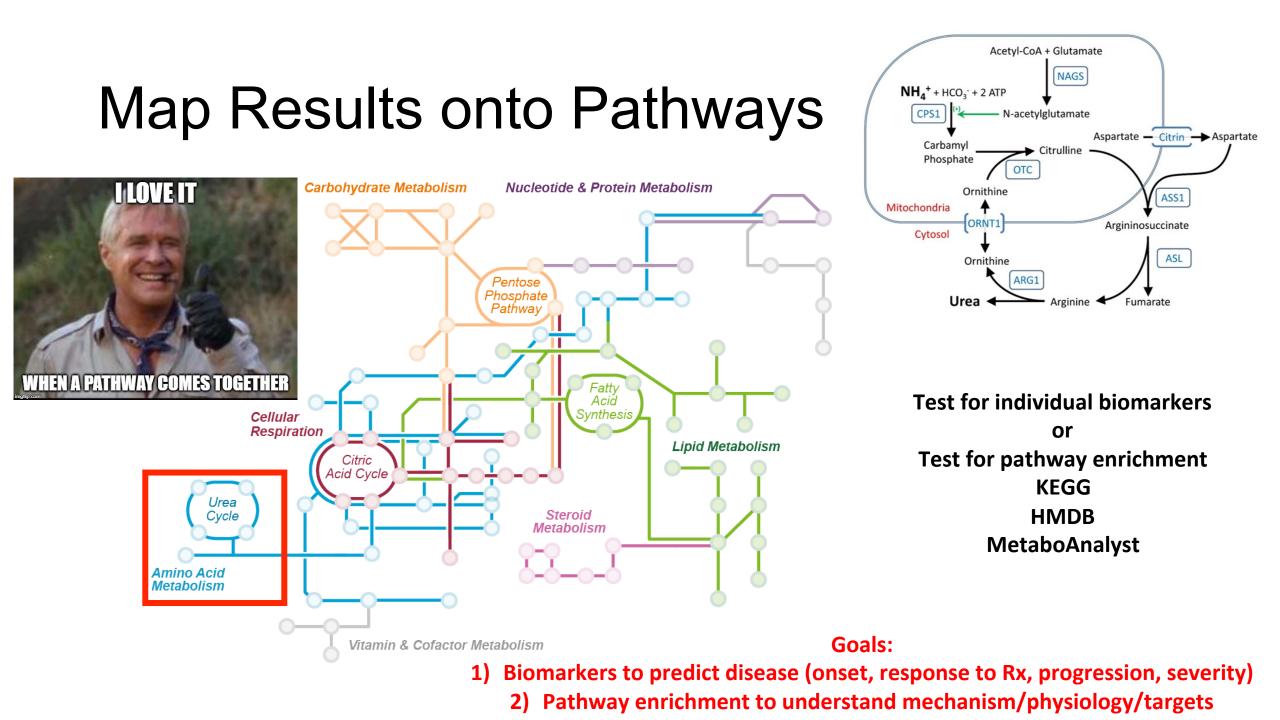
- Comprehensive analysis of metabolites (A, B, ...Z) in a biological sample
 - Tissue sample/biopsy
 - Cell culture
 - Blood
 - Urine
 - CSF
 - Breath
 - Sweat
- Typically "small molecules" (amino acids, organic acids, nucleic acids, acylcarnitines, fatty acids, biogenic amines, etc.)
- May look at lipids (lipidomics), large molecules (GAGs), etc.
- Any species or model
- Characterizes the substrates and products of metabolism in the sample/organism as a functional phenotype



Metabolomics Method: Sample introduction

- MS/MS or NMR spectrometry
- May use Gas (GC-MS) or liquid (LC-MS) chromatography to separate molecules
- 1st MS: peak intensity and separation, sample "fingerprint"
- 2nd MS: molecule "fingerprint" for ID
- Peak intensity (relative to internal standards) allow for quantification
 - relative abundance
 - actual units (eg micromolar)

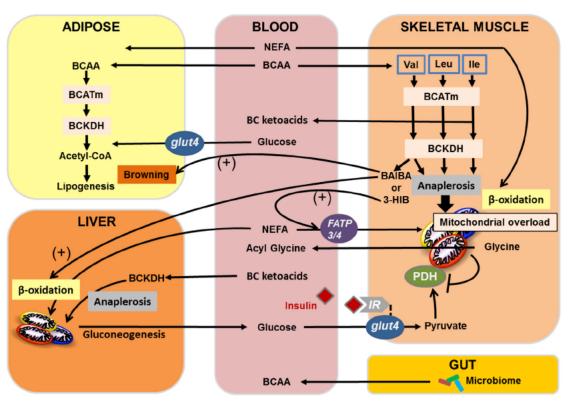

arginine


Metabolomics Methods: Targeted v CH₃ HN **Untargeted Analyses** ĊH₃ 16000 Amines **Sphingolipids** Discovery **CHOCOLATE** Amino acids Diglycerides Unsaturated 12000 **Diacylglycerols Global Untargeted** fatty acids ntensity 0008 Hypothesis-generating Glycerophosphatidylethanolamines **Estrogen derivatives** Global/Comprehensive analysis Prostaglandins Correlated to databases/libraries **Phosphatidylcholines** Isoprenoids Qualitative identification Relative quantification 4000 Validation/Quantification 900 1000 100 200 300 400 500 700 800 600 m/zTargeted А Lean Pre-HFD Hypothesis-driven Lean Post-HFD Obese Pre-HFD Subset analysis Correlated to reference standards iscle Am Identification already known Absolute quantification WHEN I METABOLOMIC Lactate Succinate Fumarate a-KG Citrate **TALWAYS KEEP IT SIMPLE**

<u>Metabolomics</u>

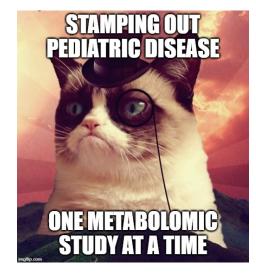
Metabolomics Analys

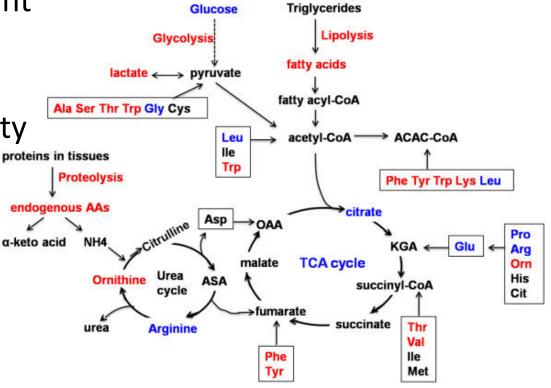
- Obtained relative or absolute values for X number of analytes
- Use GraphPad, Excel, R software to analyze values:
 - Compare groups and see which analytes are significantly different
 - Student T-test, Chi-Square
 - Test analyte concentration correlations with a continuous phenotypic variable
 - Pearson's Correlation
 - Advanced analysis (random forest, volcano plot, principle component analysis, heat map, hierarchical clustering)



Metabolomics in Research

- Obesity and Type 2 Diabetes
- Non-alcoholic Fatty Liver Disease
- Myocardial Infarction and Cardiovascular Disease
- Asthma
- Cancer(s)
- Chronic Fatigue Syndrome
- Gulf War Syndrome




Pathway enrichment in T2DM

Metabolomics in Pediatrics

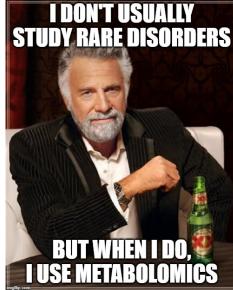
- Hypoxic ischemic encephalopathy
- Persistent ductus arteriosus
- Respiratory distress syndrome and surfactant therapy
- Cytomegalovirus infection
- Intrauterine Growth Restriction/ Prematurity
- Fetal programming in obesity/gestational diabetes
- Nephropathy
- Polycystic Ovary Syndrome

Pathway enrichment in PCOS

Metabolomics in Inherited Metabolic

• Biochemical Phenotyping:

- - Fatty Acid Oxidation Disorders
 - Urea Cycle Disorders
 - Pyruvate Dehydrogenase Deficiency
 - Peroxisomal disorders
 - Neuronal Ceroid Lipofuscinosis
 - GABA-transaminase deficiency
- Novel biomarkers
- Assessing treatment efficacy
- Functional verification of genomic variants
- Disease discovery/diagnosis
 - David Koeller/UDN, SIMD 2019: Not yet ready for prime time
- We use clinically in rare occassions


2019 Jul 16. pii: S1096-7192(19)30414-7. doi: 10.1016/j.ymgme.2019.07.007. [Epub ahead of print]

Metabolite flux: A dynamic concept for inherited metabolic disorders as complex traits. McCabe ERB¹

<u>J Inherit Metab Dis.</u> 2018 Sep;41(5):753-756. doi: 10.1007/s10545-018-0209-9. Epub 2018 Jun 6.

The phenotype of adult versus pediatric patients with inborn errors of metabolism.

Saudubray JM¹, Mochel F^{2,3,4,5}

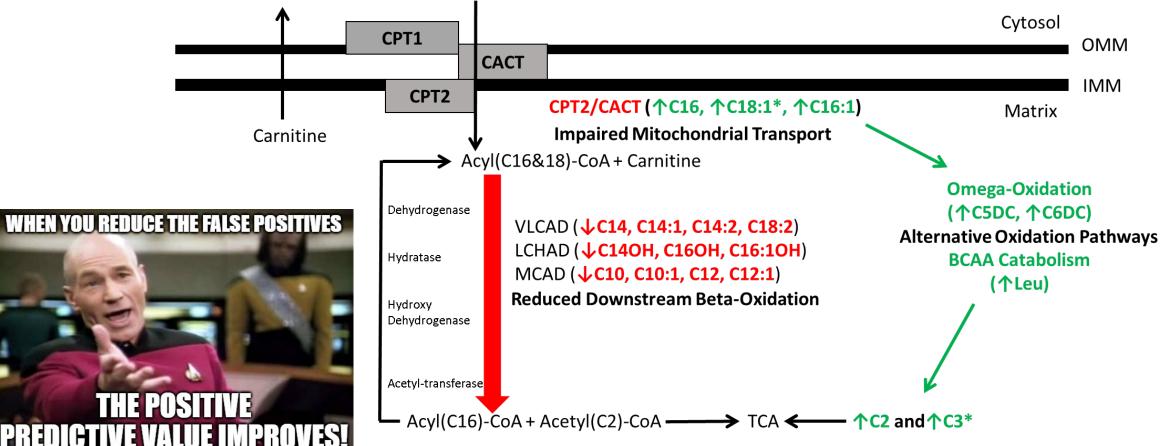
<u>J Inherit Metab Dis.</u> 2018 May;41(3):329-336. doi: 10.1007/s10545-018-0137-8. Epub 2018 Apr 16

The role of the Human Metabolome Database in inborn errors of metabolism.

Mandal R¹, Chamot D¹, Wishart DS^{2,3,4}

Metabolomics in Newborn Screening

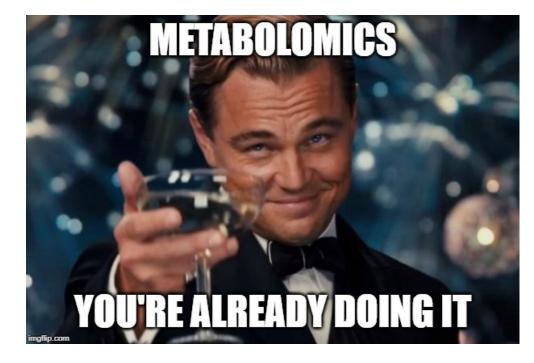
- Isn't the MS/MS based NBS already a targeted metabolomic analysis?
- Potential utility:
 - Better positive predictive value/ avoid false positives
 - More specific (personalized) cut-offs (CLIR)
 - Rapid second tier testing
 - Personalized medicine:
 - Individualized lifetime medicine
 - Tailored neonatal/pediatric care
 - Better understanding of common dz
 - Early prediction of pediatric dz
- Example...


Obligatory NBS pic

Wright and Baker, in review JCEM

- Colorado experience with macrosomia as an interfering factor on NBS
- Macrosomic vs Normal Weight based on DBS card
 - Jan 1, 2016 Dec 31, 2018
 - 24-72hrs of life
 - 2500-3999 grams = NW
 - 4000-8000 grams = Macro
 - No transfusions
 - Only non-identifiable information on the NBS card as archived by CDPHE
- Total n=~140,000 samples

Acyl (C16&18)-CoA + Carnitine Acyl(C16&18)-Carnitine (Long chain)


Disorder	Analyte	Cut-Off (uM)	2500-3999 (n=131,896)	4000-8000 (n=7,806)	OR	CI 95%	p-value
MMA/PA	C3	≥5	0.67%	1.59%	2.4	2.0 to 2.9	<0.0001
GA1	C5DC	≥0.5	0.05%	0.02%	NS	NS	0.59
CPT2/CACT	C16	≥8	0.05%	0.06%	NS	NS	0.92
CPT2/CACT	C18:1	≥2.5	0.89%	1.58%	1.8	1.5 to 2.1	<0.0001
MSUD	Leu	≥270	0.46%	0.56%	NS	NS	0.20

Higher potential false positives for C3 (Methylmalonic and Propionic Acidemia) in Macrosomic vs NW newborns in CO

New insight into pathophysiology in macrosomia

Conclusions

- Metabolomics is:
 - The study of small molecules to determine phenotypic/functional differences between groups
 - Already using in NBS (since 2000's)
 - Prevalent in research for adult, pediatric, and metabolic disease
 - Not quite ready to make a large clinical impact
- Metabolomics in relation to IEM and the NBS *could eventually*:
 - Improve quality and precision of results
 - Better characterize pathophysiology
 - Create a means of precision medicine in rare (and common) disease detection and management

